S E S 2 025
Twenty-first International Scientific Conference
SPACE, ECOLOGY, SAFETY
21 — 25 October 2025, Sofia, Bulgaria

ACCURATE DETERMINATION OF THE BOUNDARIES OF THE INTERVALS
IN WHICH SITUATIONAL CONDITIONS ARE FULFILLED.
ALGORITHM AND SUBROUTINES

Atanas Marinov Atanassov

Space Research and Technology Institute — Bulgarian Academy of Sciences
e-mail: At M_Atanassov@yahoo.com

Keywords: Space Mission Analysis and Design (SMAD); situational analysis, situational conditions

Abstract: Computer simulations are applied at various stages of space mission preparation. Situational
analysis is extremely important for assessing/evaluating the possibilities for conducting measurements, based on
which a relevant scientific problem can be solved. A computational tool is being developed to solve numerous
situational problems. By solving such type of problems check the occurrence of suitable conditions for
measurements in the course of the movement of satellites along their orbits. Each situational problem is
considered as compiled of one or a conjunction of several situational conditions. Situational conditions are
represented by geometric models that include specific parameters and constraints. From a mathematical point of
view, they represent predicate functions. Within the framework of simulation models of space missions, situational
conditions are checked with a step in the system time, coinciding with the step of numerical integration of the
equations of motion of the satellites. When using a larger step, to reduce computational costs, the determination
of the boundaries of the time intervals in which the situational conditions are fulfilled may turn out to be too rough.
Given the speeds with which a satellite moves in near-Earth space, its location at the beginning and end of an
open interval thus determined may differ by hundreds of kilometers. The text of the report presents an algorithm
for specifying the boundaries of the interval. The subroutines developed for this purpose, which are applicable to
different situational conditions, are shown.

TOYHO OMNPEAENAHE HA TPAHULUUTE HA UHTEPBAJIUTE, B KOUTO
CE N3NBbJIHABAT CUTYAULIOHHU YCITOBUA.
ANITOPUTBM U NOANPOIrPAMU

ATtaHac MapuHoB ATaHacoB

UHecmumym 3a kocMmuyecku usciiedsaHusi U mexHonoeuu — bbrzapcka akademusi Ha Haykume
e-mail: At_M_Atanassov@yahoo.com

Knroyoeu dymu: aHanus u npoekmuparHe Ha KOCMUYEeCKU MUCUU, CUMYaUUOHeH aHasus, cumyauuoHHU
ycnoeusi

Pe3rome: KomrnrombpHume cumyrnayuu ce fpusazam Ha pasiuyHu emanu om rnodeomoskama Ha
KocMmuyecku mucuu. CumyayuoHHUSIM aHanu3 € U3KIIYUMesIHO eaxeH 3a [peueHKka/oueHka Ha
8b3MOXHOCMUME 3a NposexodaHe Ha U3MepeaHUus, Ha OCHO8ama Ha Koumo 0a Moxe 0a ce pewu cbomeemHa
Hay4yHa 3adaya. Paspabomea ce u3ducriumersieH UHCMPYMEHmM 3a pewasaHe Ha cumyauyuoHHu 3adayu. Ypes
makbe mun 3adayu ce nposepsisa 8b3HUKBAHEmMO Ha MnooxodswWu ycrioeusi 3a uU3MepsaHusi 8 oda Ha
08UXXEHUEMO Ha CbMmHUyuUme rno cbkomeem-dume um opbumu. Bcsika cumyayuoHHa 3adada ce pasernexda Kamo
cbCcmaseHa Om eO0HO UU KOHIOHKUUST OM HSIKOJIKO cumyayuoHHU ycrosusi. CumyayuoHHuUme ycrnosusi ce
npedcmasssm Hali-yecmo C 2eoMempuy4yHu MOOesnu ekK/Yeawu napamempu U o2paHuveHus. Om
Mamemamuyecka enedHa moyka, me npedcmasssieam npedukamHu yHKYuU. B pamkume Ha cumynayuoHHU
MoOesiu Ha KOCMUYECKU MUCUU, cumyayuoHHUMe yCcriosusi ce nposepsisam CbC CMbIika 10 CUCMeMHOMO speme,
cbernadauo CbC cmblkama Ha YUCMIEHO UHMe2pupaHe Ha ypasHeHusma Ha 0suxeHue Ha cribmHuyume.llpu
u3ronseaHe Ha Mo-2onsMa cmbiika, € yes 0a ce Hamasnsm udyucrnumenHume pasxodu, onpedesnsHemo Ha
epaHuyume Ha spemMesume UHmMepearsu, 8 KOUMo ce U3Mb/IHsI8am cumyauyUuoHHUMe ycrosusi, Moxe 0a ce oKaxe
mebpde epybo. lNpedsud ckopocmume ¢ Koumo eOUH CITBbIMHUK ce 08UXU 8 OKOJI0-3€MHOMO MpOoCmpaHCcmeo,
MecmoronoxeHuemo My 8 maka ornpedesieHUme Ha4yasao u Kpal Ha omKpum uHmepsan Moxe 0a ce omsu4yasa
cbC cmomuyu Kunomempu. B mekcma Ha Ooknada e npedcmaseH an2opumbM 3a YMOYHsI8aHe Ha epaHuyume
Ha uHmepeana. [Moka3zaHu ca paspabomeHume 3a yesma rnodnpozpamu, KoUmo ca MpuioKUMU 3a pasuyHu
cumyayuoHHU yCr108Usl.

25

mailto:At_M_Atanassov@yahoo.com
mailto:At_M_Atanassov@yahoo.com

Introduction

Computer simulations are performed to clarify various aspects related to the orbital motions of
satellites, constructive and functional parameters of space and ground-based subsystems, and
payloads, at different stages of space mission preparation. This analysis falls under a separate
scientific field, part of space research, known as Space Mission Analysis and Design (SMAD) [1]. The
Situational Analysis (SA) is a crucial component of SMAD. It focuses on identifying time intervals or
specific moments when conditions are suitable for conducting satellite operations or other orbital
events.

A multiphysics programming environment for computer simulations of multi-satellite missions
is under development at the Space Research and Technology Institute, BAS. The Parallel Situational
Analysis Solver (PSAS) is an essential calculation tool within this environment. Mathematical models
of diverse situational conditions are being developed, which are necessary for carrying out analyses
with the PSAS.

State of the problem

Situational analysis studies and establishes the occurrence in the course of orbital movements
of satellites of conditions suitable for the performance of satellite operations (measurements,
experiments, communications, space debris close approach risk, etc). One situational task may
include one or more conditions sc:

Q) SP = sc; Ascy A ... Asc, = N sc;,

The conditions sc; themselves are predicate functions accepting values of truth or false. Accurately
determining the beginning t, and end ¢, of time intervals when situational conditions are met is an
additional but important task of the analysis. Situational condition checks are performed for each time
step, after integrating the satellite equations of motion.

At velocities of the order of several kilometres per second at which space objects travel
(depending on the altitudes at the points on the orbit), the distances travelled per integration step can
be of the order of hundreds of kilometres. Determining the boundaries of time intervals (¢, t,) when
the situational conditions are met, based on the coordinates of the satellites, determined with a step At
of the order of tens of seconds and one to two minutes, may be associated with large inaccuracies.
Naturally, these boundaries are somewhere within a time interval (t —At,t) and they should be
searched for when events related to the detection of entry and exit from the searched interval occur.

Passage of a satellite through the radio area of a ground station

An approach to determine the boundaries of time slots will be demonstrated based on the
requirement that a satellite passes through the radio visibility zone of a ground communication station
located at geographical coordinates ¢ (latitude) and A (longitude). We will define the station's radio
visibility zone by the angle 6* relative to the zenith (or by the angle 6 above the horizon;
6" =.5xm — § (Figure 1). The condition & > 0 is imposed to avoid disturbance and information loss.

RZgiqtion(1) = Rz* SIN(S5 Tt — @) * COS(A1 + w * t)
RZgqtion(2) = RZ*SIN(S5*m — @) * SIN (A + w x t)
RZg4ti0n(3) = Rz x COS(.5 xm — @)

In the last formulas w is angular rotation velocity of the Earth. For the radius vector of the
satellite ﬁsmp in the topocentric coordinate system associated with the observation station, we may
write down:

Rstop = Ty — RZsqtion:

where # and Rzgq ., are the radius vectors of the satellite and the station in the geo-equatorial
coordinate system. Then, for the angle © between the vectors ﬁswp and ﬁzsmn-on we have:

- - - 2 - 2
Cos) = Rstop-RZtop/sQRT(RStop RZgtation)

By comparing the cosines of the angles 6 and 6~ it is determined whether the satellite is in the
radio visibility zone of the ground station.

26

zenith

N
RZstation

A satellite
-_—

~ ~

/ A\

Fig. 1. Geometric model of the situational condition

Interpolation of satellite coordinates

To determine the beginning and end of the time intervals (t,,t.) in which the considered
situational condition is fulfilled, interpolation of basic quantities included in the model presented above
is used. At this stage, the Lagrange method [2] is applied. For a polynomial of nt"* order:

n L(x)

Lo RO =X o

where L(x) = (x —x¢)(x — x1) ... (x — x,) and L' (x;) = (x; — xg) .. (¢ — x;_1)(x¢; — xj41) - (x; — x). FoOr
this purpose, the m last state vectors {(p(t — (m — 1)At),, p(t — (m — 2)At),, ... p(t),,) of the
satellites from one mission are stored. In this case, only the coordinates are used for interpolation, but
in others, the velocities are also utilized. After each subsequent integration step of the equations of
motion, the obtained values of the components of the state vector p(t) are stored as the last element
of an array. The values of L'(x;) are constant and are calculated once at the beginning for all objects.
The addresses of these values and the state vectors for the objects from each mission are passed to
the situational conditions when creating their descriptors.

The situational condition model involves the geographical coordinates of the station, which,
due to the Earth's rotation, are calculated for equidistant moments at which the satellite state vectors
are integrated. Therefore, the station coordinates in a geo-equatorial coordinate system also need to
be determined by interpolation for moments within a time step.

At the stage of creating the model of a satellite mission (or other main object, for
example, space debris), the following structure is created:

type Nodes_Lagrange

integer nodes,count_nodes
integer denominator_nodes_adr
integer t nodes_adr,

integer xv_nodes_adr

end type Nodes_Lagrange

The attributes of this structure are assigned values when the space mission model is
created, and its address is written to the mission descriptor. Access to this descriptor is
provided when creating situational task models. The address of the mentioned structure with
the addresses of the state vectors of the objects, the Lagrange coefficients, and the number
of interpolation nodes are taken from this descriptor and passed to the situation solver for
solving situational problems. This is done at the creation stage of the mission model after the
thread pool is created.

Algorithm and program implementation

PSAS is developed on the basis of the programming language Fortran. The situational
condition with which it is checked whether a satellite is in the radio visibility zone of a ground
communication station is implemented with the subroutine function Sit__ 2. The subroutine initially
collects the necessary data to make it possible to determine the values of variables for moments of

27

time between the interpolation nodes by interpolation. When this is done, the situational condition is
checked for the last moment of time by calling the subroutine function Radio_zone. This subroutine
implements the situational condition model presented above. The value returned by Radio_zone,
through the logical variable flag and other variables, is passed to the list of actual arguments of the
subroutine If _Flag _u. The actual arguments also include the names of subroutines that are used
depending on the result of checking the situational condition. The subroutine If_Flag_u is designed to
be universal, for use in other situational conditions as well. When the situational condition is fulfilled for
the first time at some point in time, the subroutine subl is called within the b:IF(.NOT.begin_sit)
THEN construct. The variable subl is contextually interpreted as the name of a subroutine declared in
Sit__ 2 as Radio_zone_be. This subroutine is a combination of searching for the beginning and end of
the searched interval. The value .true. of the first argument specifies the search mode for the
beginning. Below, this subroutine is called again with the value .false. for the search mode for the end
of the interval. The last argument sub3, in the list of the subroutine subl1 (or Radio_zone_be), also
contains the name of a subroutine - Radio_zone. The last subroutine is called within the
Radio_zone_be subroutine. In the Radio_zone_be subroutine, the Lagr_interp subroutine is called
to interpolate the geographical coordinates of the station, transformed into GECS, and the
Lagr_interpl subroutine to interpolate the satellite coordinates. The differences in these subroutines
are minimal — the first interpolates one value, and the second three. In the subroutine
Radio_zone_be, an iterative process is performed in which checks are made of the situational
condition in the middle of the interval. Depending on the result of the check, the interval is halved and
the condition is checked with the subroutine Radio_zone. The process continues until the size of the
interval reaches a value specified by Tool. The iterative process is fast enough and is terminated after
about ten iterations.

The complex of subroutines for checking the considered situational condition is intended to
function within the PSAS. To avoid problems in parallel calculations, local variables from different
threads must be protected from mutual influence. This can happen when solving the same type of
situational tasks from different threads simultaneously. This is avoided by declaring local variables as
automatic.

Application of the proposed algorithms

To illustrate the proposed algorithms, we will consider the motion of a satellite with initial
orbital parameters — semi-major axis a = 7,200,000 km, eccentricity e = .001 and inclination i = 5°.
We will use the coordinates of the ground station (1 = 10° ¢ = 5°) and the angle above the horizon
6= 10°. The numerical integration of the satellite motion equation was performed with a step of
20 sec.

Table 1.
Input time by Without Output time by Without Duration [s]
interpolation [s] interpolation Interpolation [s] interpolation
4241.0 4259.4140 4261.0 4861.0 4867.9760 4881.0 608.562
10801.0 10805.3216 10821.0 11401.0 11420.4791 11421.0 615.157

Conclusion and future work

The proposed approach for accurately determining the start and end points of time intervals
during which a specified situational condition is satisfied can be extended to other types of situational
conditions. Research in this direction is ongoing, with the development of an alternative methodology
currently underway. Furthermore, the Lagrange interpolation method employed in this study may be
compared with other interpolation techniques to elucidate their respective advantages and limitations.
In the present case, the interpolation time interval is constrained between the final two interpolation
nodes - the penultimate and the last moment of time. Investigations into interpolation based on non-
polynomial functions, as well as approximation methods, would also be beneficial, particularly in the
context of advancing the multiphysics simulation environment for space mission analysis, within which
the situational analysis tools are being developed.

The methodology proposed for the precise identification of the onset and termination of time
intervals during which a given situational condition is satisfied can be generalized to accommodate
other types of situational constraints. Ongoing research in this area includes the development of an
alternative computational framework aimed at enhancing robustness and applicability. Additionally, the
Lagrange interpolation technique utilized in the present study may be systematically compared with
other interpolation schemes to assess their relative strengths and limitations in the context of

28

situational analysis. In this specific implementation, the interpolation interval is bounded by the final
two interpolation nodes—namely, the penultimate and terminal epochs—serving as a constraint in the
numerical procedure. Further exploration of interpolation strategies based on non-polynomial basis
functions, as well as approximation techniques, would be of significant value, particularly in light of the
continued development of a multiphysics simulation environment for space mission modeling, within
which the situational analysis tools are being integrated.

References:

Wertz, J.R., Larson, W.J., Space Mission Analysis and Design. Microcosm Press, Kluwer Academic
Publishers, third ed., 1999

Atanassov, A.M.. Parallel satellite orbital situational problems solver for space missions design and control.
Advances in Space Research, 58 (9), 2016, pp. 1819-1826

Atanassov, A.M., Applying Parallel Situational Analysis Solver to Satellite—Space Debris Close Approach
Problems. Algorithms and Subroutines. Aerospace Research in Bulgaria, v 37, 2025, pp. 16—-29

KanbHuukuia, J1.A., Oo6potuH, O.A., XKesepxees, B.®., and CanoroB, H.A., CneuunanbHbii KypC BbICLUEN
MaTtemMaTtuku ons BTy3oB, 1976.

APPENDIX A

xxxxx Kk kkkk * *kkkk *kk *kkkk

I Sit2: Determines whether the satellite is visible from a ground station with coordinates (lati_sta,long_sta) and

(lat0,long0)
begin_sit- sit.cond. satisfaction beginning =>.true. stored in t12(1)
begin_sit- sit.cond. satisfaction endind =>.false. stored in t12(2)

dt_sit=t12(2) - t12(1); duration= dt_sit
begin_sit=.false => fl_rezults=.true. - the results are ready- for one step only!

address- where are stored <lati,long> coord

FUNCTION Sit__2(t,dt,objectl_adr,nodes,nodes_count,node_t_adr,adr_znam_nodes,address, &
lati_sat,long_sat,lati_sta,long_sta,angle,fl_rezults,duration,begin_sit,dt_sit,t12)

USE DFlib

external Radio_zone_be

logical Sit__ 2, fl_rezults,begin_sit

integer objectl_adr, node_t_adr,adr_znam_nodes,address

real lati_sat,long_sat,lati_sta,long_sta, duration

real lati_long(2,nodes), t12*8(2,3)

real*8 t,dt,xv(6)

' type sit_cond_2

integer objectl_adr,node_t_adr,adr_znam_nodes,address
real lati_sat,long_sat,lati_sta,long_sta,angle

end type sit_cond_2
type (sit_cond_2) cond_2, cond_2_lenght(2)

integer cond_2_addr, cond_2_len

logical Radio_zone

real dt_sit

real*8 objectl_nodes(6,nodes),node_t(nodes),node_znam(nodes)
real*8 Rz/6371.D3/,pi/3.141592654/,grrad

logical flag, flagl,flag2

AUTOMATIC

POINTER(node_t_adr,node_t); POINTER(objectl_adr,objectl_nodes);
POINTER(addressll,lati_long); POINTER(address,icounter);
POINTER(cond_2_addr,cond_2)

cond_2_addr= address + 2*4*nodes+4+4; addressll= address + 8

IF(icounter.LT.nodes) THEN

icounter= icounter + 1;
lati_long(1,icounter)= lati_sat; Sit__2=.false.
lati_long(2,icounter)= long_sat)); RETURN

cond_2 len =LOC(cond_2_lenght(2)) - LOC(cond_2_lenght(1)); RETURN

ELSE; addressll= address + 8

lati_long(1,1:nodes-1)= lati_long(1,2:nodes)
lati_long(1, nodes)= lati_sat
lati_long(2,1:nodes-1)= lati_long(2,2:nodes)

29

lati_long(2, nodes)=long_sat

ENDIF
cond_2%adr_znam_nodes= adr_znam_nodes
cond_2%objectl_adr = objectl_adr; cond_2%node_t_adr= node_t_adr;
cond_2%lati_sat = lati_sat; cond_2%long_sat =long_sat;
cond_2%lati_sta = lati_sta; cond_2%long_sta =long_sta;
cond_2%angle = angle; cond_2%address = address + 8

flag= Radio_zone(node_t(nodes),dt,objectl_nodes(;,nodes),lati_sat,long_sat,lati_sta,long_sta,angle,0);

CALL If_Flag_u(Sit__2,flag,node_t(nodes),dt,fl_rezults,duration,begin_sit,dt_sit,t12, &
Radio_zone_be,Radio_zone,nodes,LOC(cond_2))

Sit__2=flag
END FUNCTION Sit__ 2
FUNCTION Radio_zone(t,dt,xv,lati_sat,long_sat,lati_sta,long_sta,angle,kod)
USE DFlib
logical Radio_zone
real lati_sat,long_sat,lati_sta,long_sta,angle
real*8 t,dt,xv(6)

|
real*8 Rz_top(3),Rs_top(3),cos_tita
real*8 r,r2,a,b,c,s1,q,l,sin_a,sin_b,cos_a,cos_b,Tita ! a/1.D0/
real*8 Rz/6371.D3/,pi/3.141592654/,grrad
logical flag
|
real*8 tq,TU,dtq,duration,omEarth/.729211575D-4/
common /c_time/tq,TU,dtg,duration
|

AUTOMATIC r,r2,c,s1,l,q,Tita,a,b,sin_a,sin_b,cos_a,cos_b,cos_c

Rz_top(3)= Rz*COS(.5*pi - lati_sta)
Rz_top(1)= Rz*SIN (.5*pi - lati_sta)*COS(long_sta+TU*omEarth)
Rz_top(2)= Rz*SIN (.5*pi - lati_sta)*SIN (long_sta+TU*omEarth)
Rs_top(1)= xv(1) - Rz_top(1); Rs_top(2)= xv(2) - Rz_top(2); Rs_top(3)= xv(3) - Rz_top(3)
IRs_top =xv-Rz_top
cos_tita = (Rs_top(1)*Rz_top(1) + Rs_top(2)*Rz_top(2) + Rs_top(3)*Rz_top(3))/ &
SQRT((Rs_top(1)**2 + Rs_top(2)**2 + Rs_top(3)**2)*(Rz_top(1)**2 + Rz_top(2)**2 + Rz_top(3)**2))
IF(COS(angle).LE.cos_tita) THEN
flag=.true.
ELSE

flag=.false.

ENDIF

Radio_zone= flag
END FUNCTION Radio_zone

[**kkkkkkkkkkkk *kkkkkkkkkkkk Fkkkkk *kkkkkkhkkk

I <Radio_zone_begin>- Precizing in/out radio-zone moments
!

! flag - .true. for 'in' & .false. for ‘out’

! mode - .true. for begin & .false. for end of time interval

SUBROUTINE Radio_zone_be(mode,nodes,t_begin,adr_cond,Radio_zone)
USE DFlib
logical Radio_zone, mode
integer adr_cond
real*8 t_begin
real*8 objectl_nodes(6,nodes),node_t(nodes),node_znam(nodes)

type sit_cond_2

integer objectl_adr,node_t_adr,adr_znam_nodes,address

real lati_sat,long_sat,lati_sta,long_sta,angle

end type sit_cond_2

type (sit_cond_2) cond_2
|

logical flag,log,flagl,flag2,flag3

30

integer objectl_adr,adr_znam_nodes,node_t_adr

real lati_sat4,long_sat4

real lati_sat,long_sat,lati_sta,long_sta,angle,lati_long(2,nodes),latitude(nodes),longitude(nodes)
real*8 lati_sat8,long_sat8

real*8 Rz/6371.D3/,pi/3.141592654/,grrad

real*8 dt,tool/.001/,td,tg,tm

real*8 xv(6),t,tt

POINTER(adr_cond,cond_2)

POINTER(node_t_adr,node_t); POINTER(adr_znam_nodes,node_znam)
POINTER(objectl_adr,objectl_nodes); POINTER(address,lati_long)

objectl_adr = cond_2%objectl_adr; node_t_adr = cond_2%node_t_adr;
adr_znam_nodes= cond_2%adr_znam_nodes;

lati_sat= cond_2%lati_sat; long_sat = cond_2%long_sat;
lati_sta= cond_2%lati_sta; long_sta = cond_2%long_sta;
angle= cond_2%angle; address = cond_2%address

td= node_t(nodes-1); tg= node_t(nodes);;
dt=tg - td; tm= td + .5DO0*dt

latitude= lati_long(1,:);longitude= lati_long(2,:);

DO WHILE(dt.GE.Tool);
log= Lagr_interp (tm,nodes,node_t, latitude, node_znam, lati_sat8); lati_sat4= lati_sat8
log= Lagr_interp (tm,nodes,node_t, longitude, node_znam,long_sat8); long_sat4= long_sat8;
log= Lagr_interpl(tm,nodes,node_t, objectl_nodes, node_znam,xv);
flag= Radio_zone (tm,dt,xv, lati_sat4, long_sat4 lati_sta,long_sta,angle,1);
IF(flag) THEN;
IF(mode) THEN; tg= tm;
ELSE; td=tm
ENDIF
ELSE
IF(mode) THEN; td= tm;
ELSE; tg=tm
ENDIF
ENDIF
tm=td + .5D0*(tg - td); dt=tg - td;
END DO

t_begin=tm;

END SUBROUTINE Radio_zone_be

[**kkkkkkkkkkkk *kkkkkkkkkk *kkkk *kkkkkkkk

I <Lagr_interp>- one dimensional interpolation
!

!

I Sx,Sy,Sz- x,y,z interpolated coordinates

logical FUNCTION Lagr_interp (t,nodes,node_t,node_s,node_znam,xv)

real*4 node_s (nhodes)

real*8 t, node_t(nodes), node_znam(nodes)
real*8 XV
real*8 rt

real*8 numerator,Sx, coeff_Lagrange

AUTOMATIC numerator,Sx, coeff_Lagrange,rt

Sx=0.D0; rt=t;
DO nd=1,nodes
numerator = 1.DO;
DO md=1,nodes
IF(md.NE.nd) THEN;
numerator = numerator *(rt - node_t(md))
ENDIF
END DO;
coeff_Lagrange= numerator *node_znam(nd);
Sx= Sx + node_s(nd)*coeff_Lagrange
END DO; Xv= SX;

Lagr_interp =.true.

31

END FUNCTION Lagr_interp

| *okkkok Kokkokok Kokkkkkok Kok

! <If_Flag_u>-for all sit conditions with precizing begin and final times
SUBROUTINE If_Flag_u(Sit_cod,flag.t,dt.fl_rezults,duration,begin_sit,dt_sit,t12, &
subl,sub3,nodes,adr_cond)

USE DFlib
logical Sit__cod, flag, fl_rezults, begin_sit
integer adr_cond
real duration, t12*8(2,3)
real*8 t,dt,H

|

real*8 t_begin,t_final

a:lF(flag) THEN
b:IF(.NOT.begin_sit) THEN ! Nachalo za situacijata- promjana na 'begin_sit' kam 'true
CALL subl(.true.,nodes,t_begin,adr_cond,sub3)
begin_sit =.true.; ! fl_rezults=.false.
t12(1,1)=t_begin ! Remembering the start time
dt_sit =.0; fl_rezults=.false.
ELSE ! Inside the situational interval
t12(2,1)=t I Remembering time with a fulfilled condition

ENDIF b
dt_sit=dt_sit + dt
Sit__cod=.true.
ELSE ! The condition isn't meet
c:IF(begin_sit) THEN ! So far, there has been a situation
CALL subl(.false.,nodes,t_final,adr_cond,sub3)
t12(2,1)=t_final ! Remembering the end time
duration= dt_sit-dt; fl_rezults=.true.;!stop
dt_sit=.0; begin_sit=.false.
ELSE
duration=.0;
ENDIF c
Sit__cod=.false.
ENDIF a

END SUBROUTINE If_Flag_u

32

